Abstract
A number of authors have recently weighed in on the issue of whether it is coherent to have bound variables that range over absolutely everything. Prima facie, it is difficult, and perhaps impossible, to coherently state the “relativist” position without violating it. For example, the relativist might say, or try to say, that for any quantifier used in a proposition of English, there is something outside of its range. What is the range of this quantifier? Or suppose we ask the relativist if there are some things that cannot appear in the range of any bound variable. The likely response would be along these lines: “No. For each object o, it possible to include o in the range of quantifiers, but one cannot quantify over everything at once.” This sentence contains unrestricted quantifiers, or so it seems, pending some clever move from a relativist. On the other hand, in the context of set theory, the reasoning behind the Burali-Forti paradox strongly suggests that there are well-orderings strictly longer than the collection of all ordinals. And set theorists regularly do transfinite recursions and transfinite reductions along such well-orderings. The relativist simply points out that one can always define new ordinals, and thus expand the range of one’s bound variables. The purpose of this paper is to explore the iterative framework, proposed in Zermelo’s 1930 paper, “Über Grenzzahlen und Mengenbereiche” (“On boundary numbers and domains of sets”), in order to shed light on these issues, and see what is involved in resolving them.