Abstract
We will study the class RSA of -dimensional representable substitution algebras. RSA is a sub-reduct of the class of representable cylindric: algebras, and it was an open problem in Andréka [1] that whether RSA can be finitely axiomatized. We will show, that the answer is positive. More concretely, we will prove, that RSA is a finitely axiomatizable quasi-variety. The generated variety is also described. We note that RSA is the algebraic counterpart of a certain proportional multimodal logic and it is related to a natural fragment of first order logic, as well.