Abstract
Very often traditional approaches studying dynamics of self-similarity
processes are not able to give their quantitative characteristics at infinity and, as a consequence, use limits to overcome this difficulty. For example, it is well know that the limit area of Sierpinski’s carpet and volume of Menger’s sponge are equal to zero. It is shown in this paper that recently introduced infinite and infinitesimal numbers allow us to use exact expressions instead of limits and to calculate exact infinitesimal values of areas and volumes at various points at infinity even if the chosen moment of the observation is infinitely faraway on the time axis from the starting point. It is interesting that traditional results that can be obtained without the usage of infinite and infinitesimal numbers can be produced just as finite approximations of the
new ones.