Abstract
Chronic Kidney Disease (CKD) is a significant global health issue, often leading to kidney failure and requiring costly medical treatments such as dialysis or transplants. Early detection of CKD is essential for timely intervention and improved patient outcomes. This project aims to develop a machine learning-based predictive model for diagnosing CKD at an early stage. By utilizing a range of clinical features such as age, blood pressure, blood sugar, and other relevant biomarkers, we employ machine learning algorithms, including Decision Trees, Random Forests, and Support Vector Machines (SVM), to predict the likelihood of a patient developing CKD. The dataset used in this study includes medical records of patients with various kidney conditions, and preprocessing techniques such as normalization and missing data handling are applied to ensure the model’s robustness. The performance of the model is evaluated using metrics such as accuracy, precision, recall, and F1-score to ensure reliable predictions. This approach not only aims to improve diagnostic accuracy but also provides a data-driven solution to assist healthcare professionals in making informed decisions. The outcome of this project can contribute to better management of CKD, ultimately helping to reduce the burden on healthcare systems and improving patient care.