The Two Envelope Paradox and Using Variables Within the Expectation Formula

Sorites:135-140 (2008)
  Copy   BIBTEX

Abstract

You are presented with a choice between two envelopes. You know one envelope contains twice as much money as the other, but you don't know which contains more. You arbitrarily choose one envelope -- call it Envelope A -- but don't open it. Call the amount of money in that envelope X. Since your choice was arbitrary, the other envelope (Envelope B) is 50% likely to be the envelope with more and 50% likely to be the envelope with less. But, strangely, that very fact might make Envelope B seem attractive: Wouldn't switching to Envelope B give you a 50% chance of doubling your money and a 50% chance of halving it? Since double or nothing is a fair bet, double or half is more than fair. Applying the standard expectation formula, you might calculate the expected value of switching to Envelope B as (.50)½X [50% chance it has less] + (.50)2X [50% chance it has more] = (1.25)X. So, it seems, you ought to switch to Envelope B: Your expected return -- your return on average, over the long run, if you did this many times -- would seem to be 25% more. But obviously that's absurd: A symmetrical calculation could persuade you to switch back to Envelope A. Hence the paradox

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,290

External links

  • This entry has no external links. Add one.
Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
19 (#1,063,142)

6 months
19 (#148,073)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Eric Schwitzgebel
University of California, Riverside

References found in this work

No references found.

Add more references