Abstract
We show that after forcing with a countable support iteration or a finite product of Sacks or splitting forcing over L, every analytic hypergraph on a Polish space admits a $\mathbf {\Delta }^1_2$ maximal independent set. This extends an earlier result by Schrittesser (see [25]). As a main application we get the consistency of $\mathfrak {r} = \mathfrak {u} = \mathfrak {i} = \omega _2$ together with the existence of a $\Delta ^1_2$ ultrafilter, a $\Pi ^1_1$ maximal independent family, and a $\Delta ^1_2$ Hamel basis. This solves open problems of Brendle, Fischer, and Khomskii [5] and the author [23]. We also show in ZFC that $\mathfrak {d} \leq \mathfrak {i}_{cl}$, addressing another question from [5].