On Hierarchical Propositions

Journal of Philosophical Logic 49 (1):1-11 (2020)
  Copy   BIBTEX

Abstract

There is an apparent dilemma for hierarchical accounts of propositions, raised by Bruno Whittle : either such accounts do not offer adequate treatment of connectives and quantifiers, or they eviscerate the logic. I discuss what a plausible hierarchical conception of propositions might amount to, and show that on that conception, Whittle’s dilemma is not compelling. Thus, there are good reasons why proponents of hierarchical accounts of propositions did not see the difficulty Whittle raises.

Other Versions

No versions found

Similar books and articles

Hierarchical Propositions.Bruno Whittle - 2017 - Journal of Philosophical Logic 46 (2):215-231.
Generalized Quantification in an Axiomatic Truth Theory.Ian Rumfitt - 2024 - Australasian Journal of Philosophy 102 (3):756-776.
Propositions and Cognitive Relations.Nicholas K. Jones - 2019 - Proceedings of the Aristotelian Society 119 (2):157-178.
Paradoxes and Restricted Quantification: A Non‐Hierarchical Approach.Dustin Tucker - 2018 - Thought: A Journal of Philosophy 7 (3):190-199.
A Modal Account of Propositions.Andy Demfree Yu - 2017 - Dialectica 71 (4):463-488.
Act‐type theories of propositions.Thomas Hodgson - 2021 - Philosophy Compass 16 (11).
Self-referential propositions.Bruno Whittle - 2017 - Synthese 194 (12):5023-5037.
Free Will and Determinism: The Anselmian Position.Stan R. Tyvoll - 1996 - Dissertation, Saint Louis University
Ramified structure.Gabriel Uzquiano - 2022 - Philosophical Studies 180 (5-6):1651-1674.

Analytics

Added to PP
2019-04-26

Downloads
469 (#60,833)

6 months
89 (#69,882)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Giorgio Sbardolini
University of Amsterdam

Citations of this work

No citations found.

Add more citations

References found in this work

The Foundations of Mathematics and Other Logical Essays.Frank Plumpton Ramsey - 1925 - London, England: Routledge & Kegan Paul. Edited by R. B. Braithwaite.
The Principles of Mathematics.Bertrand Russell - 1903 - Revue de Métaphysique et de Morale 11 (4):11-12.
Introduction to Mathematical Philosophy.Bertrand Russell - 1919 - Revue Philosophique de la France Et de l'Etranger 89:465-466.
Mathematical Logic as Based on the Theory of Types.Bertrand Russell - 1908 - American Journal of Mathematics 30 (3):222-262.

View all 15 references / Add more references