Abstract
In his previous work, the author has introduced the axiom schema of inductive dichotomy, a weak variant of the axiom schema of inductive definition, and used this schema for elementary ) positive operators to separate open and clopen determinacies for those games in which two players make choices from infinitely many alternatives in various circumstances. Among the studies on variants of inductive definitions for bounded ) positive operators, the present article investigates inductive dichotomy for these operators, and applies it to constructive investigations of variants of determinacy statements for those games in which the players make choices from only finitely many alternatives. As a result, three formulations of open determinacy, that are all classically equivalent with each other, are equivalent to three different semi-classical principles, namely Markov’s Principle, Lesser Limited Principle of Omniscience and Limited Principle of Omniscience, over a suitable constructive base theory that proves clopen determinacy. Open and clopen determinacies for these games are thus separated. Some basic results on variants of inductive definitions for \ positive operators will also be given.