On Russell’s Paradox and Attempted Resolutions

Abstract

This thesis explores Russell’s Paradox and the comparative analysis of Zermelo-Fraenkel set theory, von Neumann-Bernays-Gödel set theory, and Russell’s Type Theory from a mathematical Platonist perspective, focusing on the ontology of sets. Our conclusion posits that, although these theories have made significant attempts in addressing Russell’s paradox and other inconsistencies of naïve set theory, we currently lack a proper language for expressing set theory that fully captures the underlying Platonic world of sets. Consequently, it is impossible to definitively refute or accept any of the given theories as the ultimate solution the paradox.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,337

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Similar books and articles

Analytics

Added to PP
2023-06-14

Downloads
8 (#1,580,566)

6 months
5 (#1,042,355)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references