Abstract
In this paper I argue for a view of groups, things like teams, committees, clubs and courts. I begin by examining features all groups seem to share. I formulate a list of six features of groups that serve as criteria any adequate theory of groups must capture. Next, I examine four of the most prominent views of groups currently on offer—that groups are non-singular pluralities, fusions, aggregates and sets. I argue that each fails to capture one or more of the criteria. Last, I develop a view of groups as realizations of structures. The view has two components. First, groups are entities with structure. Second, since groups are concreta, they exist only when a group structure is realized. A structure is realized when each of its functionally defined nodes or places are occupied. I show how such a view captures the six criteria for groups, which no other view of groups adequately does, while offering a substantive answer to the question, “What are groups?”