Lorentz Transformation Under a Discrete Dynamical Time and Continuous Space

Foundations of Physics 52 (5):1-12 (2022)
  Copy   BIBTEX

Abstract

The Lorentz transformation of space and time between two reference frames is one of the pillars of the special relativity theory. As a result of the Lorentz transformation, space and time are only relative and are entangled, while the Minkowski metric is Lorentz invariant. For this reason, the Lorentz transformation is one of the major obstructions in the development of physical theories with quantized space and time. Here is described the Lorentz transformation of a physical system with a discrete dynamical time and a continuous space that fulfills Lorentz invariance while approximating the Lorentz transformation at the time continuous limit and the Galilei transformation at the classical limit. Furthermore, the discreteness of time is not mixed with the continuous nature of space, making time distinct from space.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,894

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2022-10-07

Downloads
33 (#772,233)

6 months
12 (#301,168)

Historical graph of downloads
How can I increase my downloads?