Monotonically Computable Real Numbers

Mathematical Logic Quarterly 48 (3):459-479 (2002)
  Copy   BIBTEX

Abstract

Area number x is called k-monotonically computable , for constant k > 0, if there is a computable sequence n ∈ ℕ of rational numbers which converges to x such that the convergence is k-monotonic in the sense that k · |x — xn| ≥ |x — xm| for any m > n and x is monotonically computable if it is k-mc for some k > 0. x is weakly computable if there is a computable sequence s ∈ ℕ of rational numbers converging to x such that the sum equation image|xs — xs + 1| is finite. In this paper we show that a mc real numbers are weakly computable but the converse fails. Furthermore, we show also an infinite hierarchy of mc real numbers

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,824

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

H‐monotonically computable real numbers.Xizhong Zheng, Robert Rettinger & George Barmpalias - 2005 - Mathematical Logic Quarterly 51 (2):157-170.
The Arithmetical Hierarchy of Real Numbers.Xizhong Zheng & Klaus Weihrauch - 2001 - Mathematical Logic Quarterly 47 (1):51-66.
Recursive Approximability of Real Numbers.Xizhong Zheng - 2002 - Mathematical Logic Quarterly 48 (S1):131-156.
Normal Numbers and Limit Computable Cantor Series.Achilles Beros & Konstantinos Beros - 2017 - Notre Dame Journal of Formal Logic 58 (2):215-220.
Primitive recursive real numbers.Qingliang Chen, Kaile Su & Xizhong Zheng - 2007 - Mathematical Logic Quarterly 53 (4‐5):365-380.
Minima of initial segments of infinite sequences of reals.Jeffry L. Hirst - 2004 - Mathematical Logic Quarterly 50 (1):47-50.
A Real Number Structure that is Effectively Categorical.Peter Hertling - 1999 - Mathematical Logic Quarterly 45 (2):147-182.

Analytics

Added to PP
2013-12-01

Downloads
21 (#1,114,683)

6 months
3 (#1,188,186)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

H‐monotonically computable real numbers.Xizhong Zheng, Robert Rettinger & George Barmpalias - 2005 - Mathematical Logic Quarterly 51 (2):157-170.
Approximation Representations for Δ2 Reals.George Barmpalias - 2004 - Archive for Mathematical Logic 43 (8):947-964.

Add more citations

References found in this work

Nicht konstruktiv beweisbare sätze der analysis.Ernst Specker - 1949 - Journal of Symbolic Logic 14 (3):145-158.

Add more references