Abstract
The present work is motivated by two questions. (1) What should an intuitionistic epistemic logic look like? (2) How should one interpret the knowledge operator in a Kripke-model for it? In what follows we outline an answer to (2) and give a model-theoretic definition of the operator K. This will shed some light also on (1), since it turns out that K, defined as we do, fulfills the properties of a necessity operator for a normal modal logic. The interest of our construction also lies in a better insight into the intuitionistic solution to Fitch's paradox, which is discussed in the third section. In particular we examine, in the light of our definition, De Vidi and Solomon's proposal of formulating the verification thesis as Φ → ¬¬KΦ. We show, as our main result, that this definition excapes the paradox, though it is validated only under restrictive conditions on the models