Automating Leibniz’s Theory of Concepts
Abstract
Our computational metaphysics group describes its use of au- tomated reasoning tools to study Leibniz’s theory of concepts. We start with a reconstruction of Leibniz’s theory within the theory of abstract objects (henceforth ‘object theory’). Leibniz’s theory of concepts, under this reconstruction, has a non-modal algebra of concepts, a concept-containment theory of truth, and a modal metaphysics of complete individual concepts. We show how the object-theoretic reconstruction of these components of Leibniz’s theory can be represented for investigation by means of automated theorem provers and finite model builders. The fundamental theo- rem of Leibniz’s theory is derived using these tools.