Wholes, Parts, and Infinite Collections

Philosophy 67 (261):367 - 379 (1992)
  Copy   BIBTEX

Abstract

In his book, The Principles of Mathematics , the young Bertrand Russell abandoned the common-sense notion that the whole must be greater than its part, and argued that wholes and their parts can be similar, e.g. where both are infinite series, the one being a sub-series of the other. He also rejected the popular view that the idea of an infinite number is self-contradictory, and that an infinite set or collection is an impossibility. In this paper, I intend to re-examine Russell's wisdom in doing both these things, and see if it might not have made more sense, and caused his enterprise fewer problems, if he had simply stuck to our commonplace ideas. To this end, I shall also be considering his treatment of certain paradoxes that he claims can only be resolved by the abandonment of the above notions, as well as certain others which his theories appear to have generated

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,247

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Leibniz on Infinite Numbers, Infinite Wholes, and Composite Substances.Adam Harmer - 2014 - British Journal for the History of Philosophy 22 (2):236-259.
Leibniz’s Syncategorematic Actual Infinite.Richard T. W. Arthur - 2018 - In Igor Agostini, Richard T. W. Arthur, Geoffrey Gorham, Paul Guyer, Mogens Lærke, Yitzhak Y. Melamed, Ohad Nachtomy, Sanja Särman, Anat Schechtman, Noa Shein & Reed Winegar (eds.), Infinity in Early Modern Philosophy. Cham: Springer Verlag. pp. 155-179.
Aristotle on the infinite.Ursula Coope - 2012 - In Christopher Shields (ed.), The Oxford Handbook of Aristotle. Oxford University Press USA. pp. 267.
Time and the Idea of Time.Oliver A. Johnson - 1989 - Hume Studies 15 (1):205-219.
Hume on Space and Geometry.Rosemary Newman - 1981 - Hume Studies 7 (1):1-31.
A Cantorian argument against Frege's and early Russell's theories of descriptions.Kevin C. Klement - 2008 - In Nicholas Griffin & Dale Jacquette (eds.), Russell Vs. Meinong: The Legacy of "on Denoting". London and New York: Routledge. pp. 65-77.

Analytics

Added to PP
2010-08-10

Downloads
33 (#685,336)

6 months
6 (#858,075)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

More about Infinite Numbers.P. O. Johnson - 1994 - Philosophy 69 (269):369 - 370.
Paradoxes and Infinite Numbers.Raymond Godfrey - 1993 - Philosophy 68 (266):541 - 545.

Add more citations

References found in this work

The Principles of Mathematics.Bertrand Russell - 1903 - Revue de Métaphysique et de Morale 11 (4):11-12.

Add more references