Performance Modeling of Load Balancing Techniques in Cloud: Some of the Recent Competitive Swarm Artificial Intelligence-based

Journal of Intelligent Systems 30 (1):40-58 (2020)
  Copy   BIBTEX

Abstract

Cloud computing deals with voluminous heterogeneous data, and there is a need to effectively distribute the load across clusters of nodes to achieve optimal performance in terms of resource usage, throughput, response time, reliability, fault tolerance, and so on. The swarm intelligence methodologies use artificial intelligence to solve computationally challenging problems like load balancing, scheduling, and resource allocation at finite time intervals. In literature, sufficient works are being carried out to address load balancing problem in the cloud using traditional swarm intelligence techniques like ant colony optimization, particle swarm optimization, cuckoo search, bat optimization, and so on. But the traditional swarm intelligence techniques have issues with respect to convergence rate, arriving at the global optimum solution, complexity in implementation and scalability, which limits the applicability of such techniques in cloud domain. In this paper, we look into performance modeling aspects of some of the recent competitive swarm artificial intelligence based techniques like the whale, spider, dragonfly, and raven which are used for load balancing in the cloud. The results and analysis are presented over performance metrics such as total execution time, response time, resource utilization rate, and throughput achieved, and it is found that the performance of the raven roosting algorithm is high compared to other techniques.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,448

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Efficient Data Center Management: Advanced SLA-Driven Load Balancing Solutions.M. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):368-376.
Multipath Routing Optimization for Enhanced Load Balancing in Data-Heavy Networks.M. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):377-382.
Optimizing Data Center Operations with Enhanced SLA-Driven Load Balancing".S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):368-376.
Optimization Algorithms for Load Balancing in Data-Intensive Systems with Multipath Routing.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):377-382.

Analytics

Added to PP
2020-07-04

Downloads
88 (#235,722)

6 months
4 (#1,232,709)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references