Abstract
A generally covariant theory, written in the spirit of Bohm's theory of quantum potentials, which applies to spinless, non interacting, gravitating systems, is formulated. In this theory the quantum state ψ is coupled to the metric tensor g, and the effect of the “quantum potential” is absorbed in the geometry. At the same time, ψ satisfies a covariant wave equation with respect to the very same g. This provides sufficient constraints to derive 11 coupled equations in the 11 unknowns: ψ and the components of the metric tensor gµv. The states of stable localized particles are identified, and vacuum-state solutions for both the Euclidean and the Lorentzian case are explicitly presented