The foundations of arithmetic in finite bounded Zermelo set theory

Cahiers du Centre de Logique 17:99-118 (2010)
  Copy   BIBTEX

Abstract

In this paper, I pursue such a logical foundation for arithmetic in a variant of Zermelo set theory that has axioms of subset separation only for quantifier-free formulae, and according to which all sets are Dedekind finite. In section 2, I describe this variant theory, which I call ZFin0. And in section 3, I sketch foundations for arithmetic in ZFin0 and prove that certain foundational propositions that are theorems of the standard Zermelian foundation for arithmetic are independent of ZFin0.<br><br>An equivalent theory of sets and an equivalent foundation for arithmetic was introduced by John Mayberry and developed by the current author in his doctoral thesis. In that thesis, the independence results mentioned above are proved using proof-theoretic methods. In this paper, I offer model-theoretic proofs of the central independence results using the technique of cumulation models, which was introduced by Steve Popham, a doctoral student of Mayberry<br>from the early 1980s.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,458

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

On interpretations of bounded arithmetic and bounded set theory.Richard Pettigrew - 2009 - Notre Dame Journal of Formal Logic 50 (2):141-152.
Bounded finite set theory.Laurence Kirby - 2021 - Mathematical Logic Quarterly 67 (2):149-163.
A place for pragmatism in the dynamics of reason?Thomas Mormann - 2012 - Studies in History and Philosophy of Science Part A 43 (1):27-37.
Preservation theorems for bounded formulas.Morteza Moniri - 2007 - Archive for Mathematical Logic 46 (1):9-14.
Uwagi o arytmetyce Grassmanna.Jerzy Hanusek - 2015 - Diametros 45:107-121.
Pragmatics and Cognition: Intentions and Pattern Recognition in Context.Marco Mazzone - 2009 - International Review of Pragmatics 1 (2):321-347.

Analytics

Added to PP
2009-08-11

Downloads
238 (#110,215)

6 months
7 (#711,641)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Richard Pettigrew
University of Bristol

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references