Estimating causal effects with the neural autoregressive density estimator

Journal of Causal Inference 9 (1):211-228 (2021)
  Copy   BIBTEX

Abstract

The estimation of causal effects is fundamental in situations where the underlying system will be subject to active interventions. Part of building a causal inference engine is defining how variables relate to each other, that is, defining the functional relationship between variables entailed by the graph conditional dependencies. In this article, we deviate from the common assumption of linear relationships in causal models by making use of neural autoregressive density estimators and use them to estimate causal effects within Pearl’s do-calculus framework. Using synthetic data, we show that the approach can retrieve causal effects from non-linear systems without explicitly modeling the interactions between the variables and include confidence bands using the non-parametric bootstrap. We also explore scenarios that deviate from the ideal causal effect estimation setting such as poor data support or unobserved confounders.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 103,748

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2021-09-18

Downloads
14 (#1,351,358)

6 months
2 (#1,352,274)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Francisco Pereira
Universidad Alberto Hurtado

Citations of this work

No citations found.

Add more citations

References found in this work

Causality: Models, Reasoning and Inference.Judea Pearl - 2000 - New York: Cambridge University Press.
Causality: Models, Reasoning and Inference.Judea Pearl - 2000 - Tijdschrift Voor Filosofie 64 (1):201-202.

Add more references