Thephilosophyofautomatedtheoremproving

Abstract

Different researchers use "the philosophy of automated theorem p r o v i n g " t o cover d i f f e r e n t concepts, indeed, different levels of concepts. Some w o u l d count such issues as h o w to e f f i c i e n t l y i n d e x databases as part of the philosophy of automated theorem p r o v i n g . Others wonder about whether f o r m u l a s should be represented as strings or as trees or as lists, and call this part of the philosophy of automated theorem p r o v i n g . Yet others concern themselves w i t h what k i n d o f search should b e embodied i n a n y automated theorem prover, or to what degree any automated theorem prover should resemble Prolog. Still others debate whether natural deduction or semantic tableaux or resolution is " b e t t e r " , a n d c a l l t h i s a part of the p h i l o s o p h y of automated theorem p r o v i n g . Some people wonder whether automated theorem p r o v i n g should be " h u m a n oriented" or "machine o r i e n t e d " — sometimes arguing about whether the internal p r o o f methods should be " h u m a n - I i k e " or not, sometimes arguing about whether the generated proof should be output in a f o r m u n d e r s t a n d a b l e by p e o p l e , and sometimes a r g u i n g a b o u t the d e s i r a b i l i t y o f h u m a n intervention in the process of constructing a proof. There are also those w h o ask such questions as whether we s h o u l d even be concerned w i t h completeness or w i t h soundness of a system, or perhaps we should instead look at very efficient (but i n c o m p l e t e ) subsystems or look at methods of generating models w h i c h might nevertheless validate invalid arguments. A n d a l l of these have been v i e w e d as issues in the philosophy of automated theorem proving. Here, I w o u l d l i k e to step back from such i m p l e m e n t - ation issues and ask: " W h a t do we really think we are doing when we w r i t e an automated theorem prover?" My reflections are perhaps idiosyncratic, but I do think that they put the different researchers* efforts into a broader perspective, and give us some k i n d of handle on w h i c h directions we ourselves m i g h t w i s h to pursue when constructing (or extending) an automated theorem proving system. A logic is defined to be (i) a vocabulary and formation rules ( w h i c h tells us w h a t strings of symbols are w e l l - formed formulas in the logic), and ( i i ) a definition of ' p r o o f in that system ( w h i c h tells us the conditions under which an arrangement of formulas in the system constitutes a proof). Historically speaking, definitions of ' p r o o f have been given in various different manners: the most c o m m o n have been H i l b e r t - s t y l e ( a x i o m a t i c ) , Gentzen-style (consecution, or sequent), F i t c h - s t y l e (natural deduction), and Beth-style (tableaux)..

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,010

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2010-12-22

Downloads
33 (#763,078)

6 months
3 (#1,170,440)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references