Abstract
This article investigates the proof theory of the Quantified Argument Calculus as developed and systematically studied by Hanoch Ben-Yami [3, 4]. Ben-Yami makes use of natural deduction, we, however, have chosen a sequent calculus presentation, which allows for the proofs of a multitude of significant meta-theoretic results with minor modifications to the Gentzen’s original framework, i.e., LK. As will be made clear in course of the article LK-Quarc will enjoy cut elimination and its corollaries.