Formal learning theory in context

Abstract

One version of the problem of induction is how to justify hypotheses in the face of data. Why advance hypothesis A rather than B — or in a probabilistic context, why attach greater probability to A than B? If the data arrive as a stream of observations (distributed through time) then the problem is to justify the associated stream of hypotheses. Several perspectives on this problem have been developed including Bayesianism (Howson and Urbach, 1993) and belief-updating (Hansson, 1999). These are broad families of approaches; the citations are meant just as portals.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,337

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2009-01-28

Downloads
37 (#609,859)

6 months
4 (#1,247,585)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

Scientific reasoning: the Bayesian approach.Peter Urbach & Colin Howson - 1993 - Chicago: Open Court. Edited by Peter Urbach.
An Introduction to Probability and Inductive Logic.Ian Hacking - 2001 - New York: Cambridge University Press.

Add more references