The vortex blob method as a second-grade non-Newtonian fluid

Abstract

We show that a certain class of vortex blob approximations for ideal hydrodynamics in two dimensions can be rigorously understood as solutions to the equations of second-grade non-Newtonian fluids with zero viscosity, and initial data in the space of Radon measures ${\mathcal M}$. The solutions of this regularized PDE, also known as the averaged Euler or Euler-$\alpha$ equations, are geodesics on the volume preserving diffeomorphism group with respect to a new weak right invariant metric. We prove global existence of unique weak solutions for initial vorticity in ${\mathcal M}$ such as point-vortex data, and show that the associated coadjoint orbit is preserved by the flow. Moreover, solutions of this particular vortex blob method converge to solutions of the Euler equations with bounded initial vorticity, provided that the initial data is approximated weakly in measure, and the total variation of the approximation also converges. In particular, this includes grid-based approximation schemes of the type that are usually used for vortex methods.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,607

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2017-06-17

Downloads
5 (#1,744,915)

6 months
3 (#1,464,642)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references