On Ehrenfeucht-fraïssé equivalence of linear orderings

Journal of Symbolic Logic 55 (1):65-73 (1990)
  Copy   BIBTEX

Abstract

C. Karp has shown that if α is an ordinal with ω α = α and A is a linear ordering with a smallest element, then α and $\alpha \bigotimes A$ are equivalent in L ∞ω up to quantifer rank α. This result can be expressed in terms of Ehrenfeucht-Fraïssé games where player ∀ has to make additional moves by choosing elements of a descending sequence in α. Our aim in this paper is to prove a similar result for Ehrenfeucht-Fraïssé games of length ω 1 . One implication of such a result will be that a certain infinite quantifier language cannot say that a linear ordering has no descending ω 1 -sequences (when the alphabet contains only one binary relation symbol). Connected work is done by Hyttinen and Oikkonen in [H] and [O]

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,951

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2009-01-28

Downloads
55 (#438,710)

6 months
4 (#1,023,632)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Add more citations

References found in this work

No references found.

Add more references