Irrational “Coefficients” in Renaissance Algebra

Science in Context 30 (2):141-172 (2017)
  Copy   BIBTEX

Abstract

ArgumentFrom the time of al-Khwārizmī in the ninth century to the beginning of the sixteenth century algebraists did not allow irrational numbers to serve as coefficients. To multiply$\sqrt {18} $byx, for instance, the result was expressed as the rhetorical equivalent of$\sqrt {18{x^2}} $. The reason for this practice has to do with the premodern concept of a monomial. The coefficient, or “number,” of a term was thought of as how many of that term are present, and not as the scalar multiple that we work with today. Then, in sixteenth-century Europe, a few algebraists began to allow for irrational coefficients in their notation. Christoff Rudolff was the first to admit them in special cases, and subsequently they appear more liberally in Cardano, Scheubel, Bombelli, and others, though most algebraists continued to ban them. We survey this development by examining the texts that show irrational coefficients and those that argue against them. We show that the debate took place entirely in the conceptual context of premodern, “cossic” algebra, and persisted in the sixteenth century independent of the development of the new algebra of Viète, Decartes, and Fermat. This was a formal innovation violating prevailing concepts that we propose could only be introduced because of the growing autonomy of notation from rhetorical text.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,448

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

François Viète’s revolution in algebra.Jeffrey A. Oaks - 2018 - Archive for History of Exact Sciences 72 (3):245-302.
Polynomials and equations in arabic algebra.Jeffrey A. Oaks - 2009 - Archive for History of Exact Sciences 63 (2):169-203.
The Role of Context in Belief Evaluation: Costs and Benefits of Irrational Beliefs.Elly Vintiadis & Lisa Bortolotti - 2022 - In Julien Musolino, Joseph Sommer & Pernille Hemmer (eds.), The Cognitive Science of Belief. Cambridge: Cambridge University Press. pp. 92 - 110.

Analytics

Added to PP
2019-04-18

Downloads
21 (#993,219)

6 months
6 (#827,406)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

François Viète’s revolution in algebra.Jeffrey A. Oaks - 2018 - Archive for History of Exact Sciences 72 (3):245-302.

Add more citations

References found in this work

Greek Mathematical Thought and the Origin of Algebra.Jacob Klein, Eva Brann & J. Winfree Smith - 1969 - British Journal for the Philosophy of Science 20 (4):374-375.
Polynomials and equations in arabic algebra.Jeffrey A. Oaks - 2009 - Archive for History of Exact Sciences 63 (2):169-203.
Medieval Arabic Algebra as an Artificial Language.Jeffrey A. Oaks - 2007 - Journal of Indian Philosophy 35 (5-6):543-575.

View all 6 references / Add more references