Abstract
Seventeenth-century “chance combinatorics” was a self-contained theory. It had an objective notion of chance derived from physical devices with chance properties, such as casts of dice, combinatorics to count chances and, to interpret their significance, a rule for converting these counts into fair wagers. It lacked a notion of chance as a measure of belief, a precise way to connect chance counts with frequencies and a way to compare chances across different games. These omissions were not needed for the theory’s interpretation of chance counts: determining which are fair wagers. The theory provided a model for how indefinitenesses could be treated with mathematical precision in a special case and stimulated efforts to seek a broader theory.