Abstract
It is difficult to watch wild animals while they move, so often biologists analyse characteristics of animal movement paths. One common path characteristic used is tortuousity, measured using the fractal dimension (D). The typical method for estimating fractal D, the divider method, is biased and imprecise. The bias occurs because the path length is truncated. I present a method for minimising the truncation error. The imprecision occurs because sometimes the divider steps land inside the bends of curves, and sometimes they miss the curves. I present three methods for minimising this variation and test the methods with simulated correlated random walks. The traditional divider method significantly overestimates fractal D when paths are short and the range of spatial scales is narrow. The best method to overcome these problems consists of walking the dividers forwards and backwards along the path, and then estimating the path length remaining at the end of the last divider step.