Entropic concepts in electronic structure theory

Foundations of Chemistry 16 (1):27-62 (2012)
  Copy   BIBTEX

Abstract

It is argued that some elusive “entropic” characteristics of chemical bonds, e.g., bond multiplicities (orders), which connect the bonded atoms in molecules, can be probed using quantities and techniques of Information Theory (IT). This complementary perspective increases our insight and understanding of the molecular electronic structure. The specific IT tools for detecting effects of chemical bonds and predicting their entropic multiplicities in molecules are summarized. Alternative information densities, including measures of the local entropy deficiency or its displacement relative to the system atomic promolecule, and the nonadditive Fisher information in the atomic orbital resolution(called contragradience) are used to diagnose the bonding patterns in illustrative diatomic and polyatomic molecules. The elements of the orbital communication theory of the chemical bond are briefly summarized and illustrated for the simplest case of the two-orbital model. The information-cascade perspective also suggests a novel, indirect mechanism of the orbital interactions in molecular systems, through “bridges” (orbital intermediates), in addition to the familiar direct chemical bonds realized through “space”, as a result of the orbital constructive interference in the subspace of the occupied molecular orbitals. Some implications of these two sources of chemical bonds in propellanes, π-electron systems and polymers are examined. The current–density concept associated with the wave-function phase is introduced and the relevant phase-continuity equation is discussed. For the first time, the quantum generalizations of the classical measures of the information content, functionals of the probability distribution alone, are introduced to distinguish systems with the same electron density, but differing in their current(phase) composition. The corresponding information/entropy sources are identified in the associated continuity equations

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 103,748

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2012-11-08

Downloads
98 (#225,635)

6 months
13 (#236,341)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

The principles of quantum mechanics.Paul Dirac - 1930 - Oxford,: Clarendon Press.
A Mathematical Theory of Communication.Claude Elwood Shannon - 1948 - Bell System Technical Journal 27 (April 1924):379–423.
The Principles of Quantum Mechanics.P. A. M. Dirac - 1936 - Revue de Métaphysique et de Morale 43 (2):5-5.

Add more references