Abstract
We prove the following algebraic characterization of elementary equivalence: $\equiv$ restricted to countable structures of finite type is minimal among the equivalence relations, other than isomorphism, which are preserved under reduct and renaming and which have the Robinson property; the latter is a faithful adaptation for equivalence relations of the familiar model theoretical notion. We apply this result to Friedman's fourth problem by proving that if L = L ωω (Q i ) i ∈ ω 1 is an (ω 1 , ω)-compact logic satisfying both the Robinson consistency theorem on countable structures of finite type and the Löwenheim-Skolem theorem for some $\lambda for theories having ω 1 many sentences, then $\equiv_L = \equiv$ on such structures