Abstract
For any Boolean Algebra A, let cmm be the smallest size of an infinite partition of unity in A. The relationship of this function to the 21 common functions described in Monk [4] is described, for the class of all Boolean algebras, and also for its most important subclasses. This description involves three main results: the existence of a rigid tree algebra in which cmm exceeds any preassigned number, a rigid interval algebra with that property, and the construction of an interval algebra in which every well-ordered chain has size less than cmm.