Abstract
Many factors play an important role in prediction of infertility treatment outcome. The purpose of this study was to identify a set of variables that could fulfill criteria for prediction of pregnancy in IVF patients through the application of data mining – using the discriminant analysis method. The principle of this method is to establish a set of rules that allows one to place multi-dimensional objects into one of two analyzed groups. Six hundred and ten IVF cycles were included in the analysis and the following variables were taken into consideration: female age, number and quality of retrieved oocytes, number and quality of embryos, number of transferred embryos, and outcome of treatment. Discriminant analysis allowed for the creation of a model with a 51.22% correctness of prediction to achieve pregnancy during IVF treatment and with 74.07% correctly predicted failure of pregnancy. Therefore, the created model is more suitable for the prediction of a negative outcome during IVF treatment and offers an option for adjustments to be made during infertility treatment.