Abstract
When courts started publishing judgements, big data analysis within the legal domain became possible. By taking data from the European Court of Human Rights as an example, we investigate how natural language processing tools can be used to analyse texts of the court proceedings in order to automatically predict judicial decisions. With an average accuracy of 75% in predicting the violation of 9 articles of the European Convention on Human Rights our approach highlights the potential of machine learning approaches in the legal domain. We show, however, that predicting decisions for future cases based on the cases from the past negatively impacts performance. Furthermore, we demonstrate that we can achieve a relatively high classification performance when predicting outcomes based only on the surnames of the judges that try the case.