Quantum Particle Swarm Optimization Extraction Algorithm Based on Quantum Chaos Encryption

Complexity 2021:1-21 (2021)
  Copy   BIBTEX

Abstract

Considering the highly complex structure of quantum chaos and the nonstationary characteristics of speech signals, this paper proposes a quantum chaotic encryption and quantum particle swarm extraction method based on an underdetermined model. The proposed method first uses quantum chaos to encrypt the speech signal and then uses the local mean decomposition method to construct a virtual receiving array and convert the underdetermined model to a positive definite model. Finally, the signal is extracted using the Levi flight strategy based on kurtosis and the quantum particle swarm optimization optimized by the greedy algorithm. The bit error rate and similarity coefficient of the voice signal are extracted by testing the source voice signal SA1, SA2, and SI943 under different SNR, and the similarity coefficient, uncertainty, and disorder of the observed signal and the source voice signal SA1, SA2, and SI943 verify the effectiveness of the proposed speech signal extraction method and the security of quantum chaos used in speech signal encryption.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,506

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2021-02-14

Downloads
37 (#681,973)

6 months
16 (#194,968)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references