Numerosity Perception in Peripheral Vision

Frontiers in Human Neuroscience 15 (2021)
  Copy   BIBTEX

Abstract

Peripheral vision has different functional priorities for mammals than foveal vision. One of its roles is to monitor the environment while central vision is focused on the current task. Becoming distracted too easily would be counterproductive in this perspective, so the brain should react to behaviourally relevant changes. Gist processing is good for this purpose, and it is therefore not surprising that evidence from both functional brain imaging and behavioural research suggests a tendency to generalize and blend information in the periphery. This may be caused by the balance of perceptual influence in the periphery between bottom-up and top-down processing channels. Here, we investigated this interaction behaviourally using a peripheral numerosity discrimination task with top-down and bottom-up manipulations. Participants compared numerosity between the left and right peripheries of a screen. Each periphery was divided into a centre and a surrounding area, only one of which was a task relevant target region. Our top-down task modulation was the instruction which area to attend – centre or surround. We varied the signal strength by altering the stimuli durations i.e., the amount of information presented/processed. We found that numerosity perceived in target regions was affected by contextual information in neighbouring areas. This effect appeared as soon as stimulus duration allowed the task to be reliably performed and persisted even at the longest duration. We compared the pattern of results with an ideal-observer model and found a qualitative difference in the way centre and surround areas interacted perceptually in the periphery. When participants reported on the central area, the irrelevant surround would affect the response as a weighted combination – consistent with the idea of a receptive field focused in the target area to which irrelevant surround stimulation leaks in. When participants report on surround, we can best describe the response with a model in which occasionally the attention switches from task relevant surround to task irrelevant centre – consistent with a selection model of two competing streams of information. Overall our results show that the influence of spatial context in the periphery is mandatory but task dependent.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 102,190

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2021-11-04

Downloads
17 (#1,171,412)

6 months
6 (#891,050)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Citations of this work

No citations found.

Add more citations