Probability Conservation for Multi-time Integral Equations

In Angelo Bassi, Sheldon Goldstein, Roderich Tumulka & Nino Zanghi (eds.), Physics and the Nature of Reality: Essays in Memory of Detlef Dürr. Springer. pp. 231-247 (2024)
  Copy   BIBTEX

Abstract

In relativistic quantum theory, one sometimes considers integral equations for a wave function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (x_1,x_2)$$\end{document} depending on two space-time points for two particles. A serious issue with such equations is that, typically, the spatial integral over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\psi |^2$$\end{document} is not conserved in time–which conflicts with the basic probabilistic interpretation of quantum theory. However, here it is shown that for a special class of integral equations with retarded interactions along light cones, the global probability integral is, indeed, conserved on all Cauchy surfaces. For another class of integral equations with more general interaction kernels, asymptotic probability conservation from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=-\infty $$\end{document} to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=+\infty $$\end{document} is shown to hold true. Moreover, a certain local conservation law is deduced from the first result.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,757

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Hard Provability Logics.Mojtaba Mojtahedi - 2021 - In Mojtaba Mojtahedi, Shahid Rahman & MohammadSaleh Zarepour (eds.), Mathematics, Logic, and their Philosophies: Essays in Honour of Mohammad Ardeshir. Springer. pp. 253-312.
Two-cardinal diamond and games of uncountable length.Pierre Matet - 2015 - Archive for Mathematical Logic 54 (3-4):395-412.
Peter Fishburn’s analysis of ambiguity.Mark Shattuck & Carl Wagner - 2016 - Theory and Decision 81 (2):153-165.

Analytics

Added to PP
2024-02-04

Downloads
4 (#1,807,317)

6 months
3 (#1,484,930)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references