Abstract
We make several remarks concerning properties of functions in parabolic De Giorgi classes of order p. There are new perspectives including a novel mechanism of propagating positivity in measure, the reservation of membership under convex composition, and a logarithmic type estimate. Based on them, we are able to give new proofs of known properties. In particular, we prove local boundedness and local Hölder continuity of these functions via Moser’s ideas, thus avoiding De Giorgi’s heavy machinery. We also seize this opportunity to give a transparent proof of a weak Harnack inequality for nonnegative members of some super-class of De Giorgi, without any covering argument.