Abstract
We consider the sets definable in the countable models of a weakly o-minimal theory T of totally ordered structures. We investigate under which conditions their Boolean algebras are isomorphic , in other words when each of these definable sets admits, if infinite, an infinite coinfinite definable subset. We show that this is true if and only if T has no infinite definable discrete subset. We examine the same problem among arbitrary theories of mere linear orders. Finally we prove that, within expansions of Boolean lattices, every weakly o-minimal theory is p-ω-categorical