Abstract
The first attempt at a systematic approach to axiomatic theories of truth was undertaken by Friedman and Sheard (Ann Pure Appl Log 33:1–21, 1987). There twelve principles consisting of axioms, axiom schemata and rules of inference, each embodying a reasonable property of truth were isolated for study. Working with a base theory of truth conservative over PA, Friedman and Sheard raised the following questions. Which subsets of the Optional Axioms are consistent over the base theory? What are the proof-theoretic strengths of the consistent theories? The first question was answered completely by Friedman and Sheard; all subsets of the Optional Axioms were classified as either consistent or inconsistent giving rise to nine maximal consistent theories of truth.They also determined the proof-theoretic strength of two subsets of the Optional Axioms. The aim of this paper is to continue the work begun by Friedman and Sheard. We will establish the proof-theoretic strength of all the remaining seven theories and relate their arithmetic part to well-known theories ranging from PA to the theory of ${\Sigma^1_1}$ dependent choice.