The Modal Logic Z Applied to Lifschitz's Benchmark Problems for Formal Nonmonotonic Reasoning

Dissertation, University of Kansas (1993)
  Copy   BIBTEX

Abstract

To give a standard against which to judge the limitations and possibilities of a theory of nonmonotonic reasoning, V. Lifschitz presented a paper at the 1988 Second International Workshop on Non-Monotonic Reasoning entitled "Benchmark Problems for Formal Nonmonotonic Reasoning." We show in this work the application of the modal logic Z to these benchmark problems. The modal logic Z provides a consistency-based approach to nonmonotonic reasoning. Z is a fragment of second order modal quantificational logic involving quantification over propositions but not over properties. We demonstrate that Z leads to correct and concise solutions to all the benchmark problems. We also show that many solutions to nonmonotonic reasoning problems expressed in Z are automatically derivable. Because we are able to solve the benchmark problems by hand using a small number of lemmas, we claim that Z has a learnable proof theory. ;In addition to handling all the benchmark problems, which to our knowledge has not been demonstrated for a single system of nonmonotonic reasoning, we also make a number of smaller contributions. This work provides solutions to the unique name problems which, to our knowledge, have not been solved by any other formal system. It demonstrates a new representation in Z for temporal projection, and improves on a representation by Lifschitz for temporal explanation. It describes a way of generalizing temporal projection to handle concurrent actions, and a way of using temporal explanation for counterfactual reasoning. It shows that Z is able to reason correctly about autoepistemic problems, including problems with quantification. Finally, it reports results on our use of and extensions to a theorem prover for Z

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,173

External links

  • This entry has no external links. Add one.
Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Drawing Inferences from Conditionals.Hans Rott - 1997 - In Eva Ejerhed Sten Lindström (ed.), Logic, Action and Cognition: Essays in Philosophical Logic. Dordrecht, Netherland: Kluwer Academic Publishers. pp. 149-179.
Reasoning about Minimal Knowledge in Nonmonotonic Modal Logics.Rosati Riccardo - 1999 - Journal of Logic, Language and Information 8 (2):187-203.
Belief Revision, Conditional Logic and Nonmonotonic Reasoning.Wayne Wobcke - 1995 - Notre Dame Journal of Formal Logic 36 (1):55-103.
Minimal Temporal Epistemic Logic.Joeri Engelfriet - 1996 - Notre Dame Journal of Formal Logic 37 (2):233-259.
Efficient reasoning about rich temporal domains.Yoav Shoham - 1988 - Journal of Philosophical Logic 17 (4):443 - 474.
Nonmonotonic causal theories.Joohyung Lee, Vladimir Lifschitz & Hudson Turner - 2004 - Artificial Intelligence 153 (1-2):49-104.
Logical Calculi for Reasoning in the Presence of Uncertainty.Thomas J. Weigert - 1989 - Dissertation, University of Illinois at Chicago

Analytics

Added to PP
2015-02-02

Downloads
0

6 months
0

Historical graph of downloads

Sorry, there are not enough data points to plot this chart.
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references