Abstract
We investigate questions involving Aronszajn trees, square principles, and stationary reflection. We first consider two strengthenings of introduced by Brodsky and Rinot for the purpose of constructing κ‐Souslin trees. Answering a question of Rinot, we prove that the weaker of these strengthenings is compatible with stationary reflection at κ but the stronger is not. We then prove that, if μ is a singular cardinal, implies the existence of a special ‐tree with a cf(μ)‐ascent path, thus answering a question of Lücke.