Logical aspects of Cayley-graphs: the group case

Annals of Pure and Applied Logic 131 (1-3):263-286 (2004)
  Copy   BIBTEX

Abstract

We prove that a finitely generated group is context-free whenever its Cayley-graph has a decidable monadic second-order theory. Hence, by the seminal work of Muller and Schupp, our result gives a logical characterization of context-free groups and also proves a conjecture of Schupp. To derive this result, we investigate general graphs and show that a graph of bounded degree with a high degree of symmetry is context-free whenever its monadic second-order theory is decidable. Further, it is shown that the word problem of a finitely generated group is decidable if and only if the first-order theory of its Cayley-graph is decidable

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,247

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2013-10-30

Downloads
26 (#851,330)

6 months
7 (#704,497)

Historical graph of downloads
How can I increase my downloads?