Coordinate formalism on Hilbert manifolds

Abstract

Infinite-dimensional manifolds modelled on arbitrary Hilbert spaces of functions are considered. It is shown that changes in model rather than changes of charts within the same model make coordinate formalisms on finite and infinite-dimensional manifolds deeply similar. In this context the infinite-dimensional counterparts of simple notions such as basis, dual basis, orthogonal basis, etc. are shown to be closely related to the choice of a model. It is also shown that in this formalism a single tensor equation on an infinite-dimensional manifold produces a family of functional equations on different spaces of functions.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,225

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2009-01-28

Downloads
43 (#518,085)

6 months
9 (#482,469)

Historical graph of downloads
How can I increase my downloads?