An efficient recurrent neural network with ensemble classifier-based weighted model for disease prediction

Journal of Intelligent Systems 31 (1):979-991 (2022)
  Copy   BIBTEX

Abstract

Day-to-day lives are affected globally by the epidemic coronavirus 2019. With an increasing number of positive cases, India has now become a highly affected country. Chronic diseases affect individuals with no time identification and impose a huge disease burden on society. In this article, an Efficient Recurrent Neural Network with Ensemble Classifier is built using VGG-16 and Alexnet with weighted model to predict disease and its level. The dataset is partitioned randomly into small subsets by utilizing mean-based splitting method. Various models of classifier create a homogeneous ensemble by utilizing an accuracy-based weighted aging classifier ensemble, which is a weighted model’s modification. Two state of art methods such as Graph Sequence Recurrent Neural Network and Hybrid Rough-Block-Based Neural Network are used for comparison with respect to some parameters such as accuracy, precision, recall, f1-score, and relative absolute error. As a result, it is found that the proposed ERNN-EC method accomplishes accuracy of 95.2%, precision of 91%, recall of 85%, F1-score of 83.4%, and RAE of 41.6%.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,448

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Fraudulent Financial Transactions Detection Using Machine Learning.Mosa M. M. Megdad, Samy S. Abu-Naser & Bassem S. Abu-Nasser - 2022 - International Journal of Academic Information Systems Research (IJAISR) 6 (3):30-39.
Face Recognition Using Dct And Neural Micro-Classifier Network.Abdellatief Hussien AbouAli - 2018 - International Journal of Engineering and Information Systems (IJEAIS) 2 (3):27-35.

Analytics

Added to PP
2022-08-26

Downloads
14 (#1,264,352)

6 months
5 (#1,015,253)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references