Abstract
We show how one can obtain solutions to the Arzelà‐Ascoli theorem using suitable applications of the Bolzano‐Weierstraß principle. With this, we can apply the results from and obtain a classification of the strength of instances of the Arzelà‐Ascoli theorem and a variant of it. Let be the statement that each equicontinuous sequence of functions contains a subsequence that converges uniformly with the rate and let be the statement that each such sequence contains a subsequence which converges uniformly but possibly without any rate. We show that is instance‐wise equivalent, over, to the Bolzano‐Weierstraß principle and that is instance‐wise equivalent, over, to, and thus to the strong cohesive principle (). Moreover, we show that over the principles, and are equivalent.