Functional completeness and primitive positive decomposition of relations on finite domains

Logic Journal of the IGPL 32 (2024)
  Copy   BIBTEX

Abstract

We give a new and elementary construction of primitive positive decomposition of higher arity relations into binary relations on finite domains. Such decompositions come up in applications to constraint satisfaction problems, clone theory and relational databases. The construction exploits functional completeness of 2-input functions in many-valued logic by interpreting relations as graphs of partially defined multivalued ‘functions’. The ‘functions’ are then composed from ordinary functions in the usual sense. The construction is computationally effective and relies on well-developed methods of functional decomposition, but reduces relations only to ternary relations. An additional construction then decomposes ternary into binary relations, also effectively, by converting certain disjunctions into existential quantifications. The result gives a uniform proof of Peirce’s reduction thesis on finite domains, and shows that the graph of any Sheffer function composes all relations there.

Other Versions

No versions found

Similar books and articles

The Maximal Closed Classes of Unary Functions in p‐Valued Logic.Liu Renren & Lo Czukai - 1996 - Mathematical Logic Quarterly 42 (1):234-240.

Analytics

Added to PP
2024-06-02

Downloads
168 (#138,799)

6 months
95 (#62,704)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Sergiy Koshkin
University of Houston - Downtown

Citations of this work

No citations found.

Add more citations

References found in this work

A Survey of Symbolic Logic.C. I. Lewis - 1918 - Journal of Philosophy, Psychology and Scientific Methods 17 (3):78-79.
Is Peirce’s Reduction Thesis Gerrymandered?Sergiy Koshkin - 2022 - Transactions of the Charles S. Peirce Society 58 (4):271-300.

Add more references