Topological framework for finite injury

Mathematical Logic Quarterly 38 (1):189-195 (1992)
  Copy   BIBTEX

Abstract

We formulate an abstract version of the finite injury method in the form of the Baire category theorem. The theorem has the following corollaries: The Friedberg-Muchnik pair of recursively enumerable degrees, the Sacks splitting theorem, the existence of a minimal degree below 0′ and the Shoenfield jump theorem

Other Versions

reprint Kontostathis, Kyriakos (1992) "Topological framework for finite injury". Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 38(1):189-195

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,130

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Jump Theorems for REA Operators.Alistair H. Lachlan & Xiaoding Yi - 1993 - Mathematical Logic Quarterly 39 (1):1-6.
A jump inversion theorem for the enumeration jump.I. N. Soskov - 2000 - Archive for Mathematical Logic 39 (6):417-437.
Finite injury and Σ1-induction.Michael Mytilinaios - 1989 - Journal of Symbolic Logic 54 (1):38 - 49.
An analogue of the Baire category theorem.Philipp Hieronymi - 2013 - Journal of Symbolic Logic 78 (1):207-213.

Analytics

Added to PP
2013-12-01

Downloads
15 (#1,229,188)

6 months
5 (#1,035,390)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

A general framework for priority arguments.Steffen Lempp & Manuel Lerman - 1995 - Bulletin of Symbolic Logic 1 (2):189-201.
The combinatorics of the splitting theorem.Kyriakos Kontostathis - 1997 - Journal of Symbolic Logic 62 (1):197-224.

Add more citations

References found in this work

Degrees of unsolvability.Joseph Robert Shoenfield - 1971 - New York,: American Elsevier.
Degrees of Unsolvability.Gerald E. Sacks - 1966 - Princeton University Press.

Add more references