A proof of Shelah's partition theorem

Archive for Mathematical Logic 34 (4):263-268 (1995)
  Copy   BIBTEX

Abstract

A self contained proof of Shelah's theorem is presented: If μ is a strong limit singular cardinal of uncountable cofinality and 2μ > μ+ then $\left( {\begin{array}{*{20}c} {\mu ^ + } \\ \mu \\ \end{array} } \right) \to \left( {\begin{array}{*{20}c} {\mu ^ + } \\ {\mu + 1} \\ \end{array} } \right)_{< cf\mu } $

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,394

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Simultaneous reflection and impossible ideals.Todd Eisworth - 2012 - Journal of Symbolic Logic 77 (4):1325-1338.
A strong polarized relation.Shimon Garti & Saharon Shelah - 2012 - Journal of Symbolic Logic 77 (3):766-776.
Getting more colors II.Todd Eisworth - 2013 - Journal of Symbolic Logic 78 (1):17-38.
Wild edge colourings of graphs.Mirna Džamonja, Péter Komjáth & Charles Morgan - 2004 - Journal of Symbolic Logic 69 (1):255 - 264.
Getting more colors I.Todd Eisworth - 2013 - Journal of Symbolic Logic 78 (1):1-16.
Pcf without choice Sh835.Saharon Shelah - 2024 - Archive for Mathematical Logic 63 (5):623-654.
Same graph, different universe.Assaf Rinot - 2017 - Archive for Mathematical Logic 56 (7):783-796.
Set theory without choice: not everything on cofinality is possible.Saharon Shelah - 1997 - Archive for Mathematical Logic 36 (2):81-125.

Analytics

Added to PP
2013-11-23

Downloads
44 (#506,602)

6 months
4 (#1,249,987)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

Shelah's pcf theory and its applications.Maxim R. Burke & Menachem Magidor - 1990 - Annals of Pure and Applied Logic 50 (3):207-254.

Add more references