Abstract
We investigate the epistemological consequences of a positive polymerase chain reaction SARS-CoV test for two relevant hypotheses: V is the hypothesis that an individual has been infected with SARS-CoV-2; C is the hypothesis that SARS-CoV-2 is the cause of flu-like symptoms in a given patient. We ask two fundamental epistemological questions regarding each hypothesis: First, how much confirmation does a positive test lend to each hypothesis? Second, how much evidence does a positive test provide for each hypothesis against its negation? We respond to each question within a formal Bayesian framework. We construe degree of confirmation as the difference between the posterior probability of the hypothesis and its prior, and the strength of evidence for a hypothesis against its alternative in terms of their likelihood ratio. We find that test specificity—and coinfection probabilities when making inferences about C—were key determinants of confirmation and evidence. Tests with 8) for V against ¬V regardless of sensitivity. Accordingly, low specificity tests could not provide strong evidence in favor of C in all plausible scenarios modeled. We also show how a positive influenza A test disconfirms C and provides weak evidence against C in dependence on the probability that the patient is influenza A infected given that his/her symptoms are not caused by SARS-CoV-2. Our analysis points out some caveats that should be considered when attributing symptoms or death of a positively tested patient to SARS-CoV-2.