Abstract
FAR FROM BEING A PURELY ESOTERIC CONCERN of theoretical mathematicians, the examination of the ontological status of mathematical entities, I submit, has far-reaching implications for a very practical area of knowledge, namely, the method of science in general, and of physics in particular. Although physics and mathematics have since Newton's second derivative been inextricably wedded, modern physics has a particularly mathematical dependence. Physics has moved and continues to move further away from the possibility of direct empirical verification, primarily because of the increasingly complex logistical problems of experimentation within the parameters of the very large and of the very small. As certain areas become more and more theoretical, with developments of this century in astrophysics, cosmology, and quantum mechanics, and more specifically, with the postulation of new hypothetical elementary particles based almost exclusively upon mathematical data, physics is forced to depend increasingly upon mathematics as a method for verifying physical possibility. Typically, a mathematical formulation descriptive of an empirically established phenomenon x is manipulated and made subject to derivation on the assumption that the new formulation will continue to correspond with physical reality, and may even yield new information about the phenomenon's behavior. Why, however, should a coherence between the empirically-defined world and mathematical processes be assumed? This coherence is, above all, dependent upon a hidden metaphysically strong presupposition about the ontological status of mathematical entities and their systems.