The Automated Discovery of Universal Theories

Dissertation, University of Pittsburgh (1986)
  Copy   BIBTEX

Abstract

This thesis examines the prospects for mechanical procedures that can identify true, complete, universal, first-order logical theories on the basis of a complete enumeration of true atomic sentences. A sense of identification is defined that is more general than those which are usually studied in the learning theoretic and inductive inference literature. Some identification algorithms based on confirmation relations familiar in the philosophy of science are presented. Each of these algorithms is shown to identify all purely universal theories without function symbols. It is demonstrated that no procedure can solve this universal theory inference problem in the more usual senses of identification. The question of efficiency for theory inference systems is addressed, and some definitions of limiting complexity are examined. It is shown that several aspects of obvious strategies for solving the universal theory inference problem are NP-hard. Finally, some non-worst case heuristic search strategies are examined in light of these NP-completeness results. These strategies are based upon an isomorphism between clausal entailments of a certain class and partition lattices, and are applicable to the improvement of earlier work on language acquisition and logical inductive inference

Other Versions

No versions found

Links

PhilArchive

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Inductive inference in the limit of empirically adequate theories.Bernhard Lauth - 1995 - Journal of Philosophical Logic 24 (5):525 - 548.
A material theory of induction.John D. Norton - 2003 - Philosophy of Science 70 (4):647-670.
There Are No Universal Rules for Induction.John D. Norton - 2010 - Philosophy of Science 77 (5):765-777.
Complexity of the Universal Theory of Residuated Ordered Groupoids.Dmitry Shkatov & C. J. Van Alten - 2023 - Journal of Logic, Language and Information 32 (3):489-510.
A Demonstration of the Incompleteness of Calculi of Inductive Inference.John D. Norton - 2019 - British Journal for the Philosophy of Science 70 (4):1119-1144.
A generalized characterization of algorithmic probability.Tom F. Sterkenburg - 2017 - Theory of Computing Systems 61 (4):1337-1352.

Analytics

Added to PP
2010-12-22

Downloads
368 (#83,175)

6 months
66 (#94,326)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Citations of this work

No citations found.

Add more citations

References found in this work

Computability and Logic.George Boolos, John Burgess, Richard P. & C. Jeffrey - 1980 - New York: Cambridge University Press. Edited by John P. Burgess & Richard C. Jeffrey.
Social Choice and Individual Values.Kenneth Joseph Arrow - 1951 - New York, NY, USA: Wiley: New York.
Legal obligation and the duty of fair play.John Rawls - 1964 - In Sidney Hook, Law and philosophy. [New York]: New York University Press.

View all 12 references / Add more references